‘ PRODUCT SECURITY INITIATIVE
"IJ QUALCOMM

KISS: A Bit Too Simple

Greg Rose
ggr@qualcomm.com

Outline

[KISS — random number generator
 Subgenerators

 Efficient attack

 New KISS and attack

 Conclusion

PRODUCT SECURITY INITIATIVE { e SR JQOKT i s Va5 [G
LI‘/ QUALCOMM '

One approach to PRNG security

"A random number generator is like sex:
When it's good, its wondertful;
And when it's bad, it's still pretty good."
Add to that, in line with my recommendations
on combination generators;
"And if it's bad, try a twosome or threesome.”
-- George Marsaglia, quoting himself (1999)

PRODUCT SECURITY INITIATIVE) P ' ® <l A 3] (Pt
(B e R FO
LI‘/ QUALCOMM !

KISS — a Pseudo-Random Number Generator

Q “Keep it Simple Stupid”
O Marsaglia and Zaman, Florida State U, 1993
O Marsaglia posts C version to sci.crypt, 1998/99, took off

(J Never said it was secure!
» Good thing, too...
» But others seem to think it is.

#define znew
#define wnew
#define MWC (

#define SHR3
(§51<<5))

#define CONG
#define KISS

‘ PRODUCT SECURITY INITIATIVE
I/ QUALCOMM

(
(
(
(

z=3

w=1

6969* (z&65535) + (z>>16))
8000* (w&65535) + (w>>16))

znew<<1l6) +wnew)

r=(9sr<<17), jsr*=(jsr>>13), jsr"=

(Jcong=69069*jcong+1234567)
((MWC"CONG) +SHR3)

KISS diagram

W ITW;
(7

OZ200

O -—X

oA WS

l

g::u,,’

Multiply With Carry subgenerator

#define znew (z=36969* (z&065535)+(z>>10))
#define wnew (w=18000* (w&65535)+ (w>>106))
#define MWC ((znew<<1l6)-+wnew)

d znew and wnew

3 16 bits “random looking”, 32 bits of state

O Multiply by constant (18000, 36969 resp), add carry from previous
multiplication

[Periods about 229 and 23°2 — two long cycles each
O Two bad values (0 and something else) repeat forever
O Large states go into smaller ones after one update
ad f{x) = cxmod 2'%c — 1
» modulus is prime for the two constants shown

O znew only affects high order bits.

PRODUCT SECURITY INITIATIVE 2 2 S = Panh 5 Sase
(B I P
lI‘/ QUALCOMM J—

Linear Congruential subgenerator

#define CONG (jcong=69069*jcong+1234567)

 Well studied, period 232, single long cycle

O Low order bits form smaller linear congruential
generators

A In particular, LSB goes “01010101010...”

PRODUCT SECURITY INITIATIVE i P T Y > SN Pk [8
lI‘/ QUALCOMM g

3-Shift Register subgenerator

#define SHR3 (jsr”=(jsr<<1l7), jsr’*=(jsr>>13), Jsr’=
(§sr<<5))

[Linear, but not like LFSR

O Authors assume long period, but wrong
O LSBs of output form one of 64 LFSRs

O Periods range from 1 to 2282 (not 232-1!)

O Can recover initial state from 32 consecutive LSBs easily
» Binary matrix multiplication

O (It turns out that Marsaglia got the constants 13 and 17 back-to-
front; subsequent versions of KISS get them right and the generator
then has a full period.)

‘ PRODUCT SECURITY INITIATIVE] % Sn "R 3T HA]
lI‘/ QUALCOMM —

',\.';-,...’

Attack idea

d Divide and Conquer

> Registers are updated independently of each other, then
combined

> So try to get rid of effects of one or more registers
» One of them is already partly gone!

 Exploit weaknesses (eg. Linearity of SHR3, low order bits
of CONG)

[Guess and Determine

» Guess (that is, try all possibilities) for some values, then
» Derive other values
» Verify whether still consistent

‘ PRODUCT SECURITY INITIATIVE S AR A R e
§ T EeE———
lI‘/ QUALCOMM e

What do we know at the start?

‘ Guessed
_______________ L

w © M | C Determined
n hd w | 0
e | ¥ 2> C | 5®E N Now known
W i G

> Y

H1 S+

R

3

3 s gy JuEE =0 WS

PRODUCT SECURITY INITIATIVE Z
:llj/ QUALCOMM g—

Guess wnew

z Guessed
[— = 777777 "n"""""""‘l
| w e M | C Determined
N W W | O
| € + e 4 C | C N Now known
| W | G

W ITW;
<7

A 2. A LG AT STt
PRODUCT SECURITY INITIATIVE { e 5, ST sy A ¥ B
(‘I} P
s/ QUALCOMM

Guess LSB of CONG (01010... or 10101...)

W ITW;

F S|

HZ00

Guessed

Determined

Now known

0 W3

l

g.' Tt

Determine LSB sequence from SHR3

W0 T W,

F S|

HZ00

Guessed

Determined

Now known

0 w3

l

g.' Tt

Verify LSB sequence from SHR3 is LFSR

w0 T W

F S|

HZ00

Guessed

Determined

Now known

0 W3

l

g.' Tt

Determine half of CONG

O=Z00

Guessed

Determined

Now known

W AOTITW]m
(7

N 4 - LY, '7,143\«‘ ." <
{ PRODUCT SECURITY INITIATIVE i % 5, GO
‘I’ P
7/ QUALCOMM

0 W3

l

g.' Tt

Guess top half of CONG

OZ200

Guessed

Determined

Now known

w AT,
<7

{ PRODUCT SECURITY INITIATIVE ;. \ % 55, " G
\I’ -
7/ QUALCOMM

0 W3

I

g:.w,..’

Determine low half of znew

2 ® o=
+
=
0 ==
@Z200

Guessed

Determined

Now known

W AOTITW]m
<7

R UAg Vv
PRODUCT SECURITY INITIATIVE { ST AN D S
(F o
'I’/ QUALCOMM

0 W3

I

g:.w,..’

Determine high half of znew from low half

WA ITW

|

D200

Guessed

Determined

Now known

0 W3

I

g:.w,..’

And verify...

Guessed

Determined

. Now known

PAGE 19

How much work?

O Dominated by trying, on average, 589,823,999 values for
wnew

O And for each one, using Berlekamp-Massey algorithm to
check whether the candidate for SHR3 is LFSR

» Alternatively, can check parity equations.

A Few hours on laptop.

PRODUCT SECURITY INITIATIVE 2 S, s ~%A pf [
lI‘/ QUALCOMM '

Newer KISS

O Sci.crypt 2011 posting by Marsaglia

 Looking for longer and longer cycles

A Period > 1040,000,000

 State is ridiculously large (222+3 32-bit words)
 Again combines multiple components “for security”

b32MWC (222 words)

S C
H v @)
— —— =t N
R
3 G
v

‘ PRODUCT SECURITY INITIATIVE 3 & 52,] < A | G
lI‘/ QUALCOMM e

New KISS

static unsigned long Q[4194304],carry=0;
unsigned long b32MWC (void)

{unsigned long t,x; static int 3J=4194303;
J=(j+1) &4194303;

x=Q[7]; t=(x<<K28)+carry;
carry=(x>>4) - (t<x) ;

return (Q[Jl=t-x);

}

#define CNG (cng=69069*cng+13579)

#fdefine XS (xs™=(xs<<13), xs*=(xs>>17),
#define KISS (b32MWC () +CNG+XS)

(Note 13 and 17 reversed from before)

I i Zm LN J (LS ST
‘ PRODUCT SECURITY INITIATIVE) P T W Y S PO »
B e e— B e aa——
I/ QUALCOMM

Xs"=(xs<<5H)

)

Complemented Multiply With Carry

O Large circular buffer with carry variable
O Extremely long period

(1 State values are used directly for output
A Can be run backward

O After one rotation through buffer, can check consistency
easily (used in attack)

O By itself has no cryptographic strength at all

» output is state

‘ PRODUCT SECURITY INITIATIVE B N < A o [B
lI‘/ QUALCOMM e

Attack on New KISS

 Simple divide and conquer
 Guess state of CONG and SHR3

O Run generator forward slightly more than a full rotation
of b32MWC’s buffer

O If 3 outputs are mutually consistent, must have guessed
correctly

 Run backward to recover full initial state

[Equivalent to 203 key setup operations
> But the key is huge, so is the key setup operation

TR v
A DI

PRODUCT SECURITY INITIATIVE PEo P - : -
F T EeE———
:ll‘/ QUALCOMM I

Optimization of attack

A Only care about v, v,, v, and vy vg,,, Ug,.
[Can fast-forward the simple generators cong and SHR3

4 Can maintain cong,, congy and step them forward to
enumerate cycle, similarly SHR3 cycles.

(O Attack is now 293 basic operations, about 24! key setup
operations

‘ PRODUCT SECURITY INITIATIVE g S Y i AT
T A A
lI‘/ QUALCOMM —

Conclusion

d M & Z overestimated the period by about a factor of 10
1 KISS is not secure
[Need about 70 words of generated output (original KISS)

[Can apply attack to unknown (but biased) plaintext
» Replace B-M step with fast correlation attack
> Still surprisingly efficient

A Don’ t use KISS if you need security!

‘ PRODUCT SECURITY INITIATIVE { e S N = sl St [G
eSS SSS—— e
lI‘/ QUALCOMM g

